(12)

United States Patent

Bent et al.

US009183211B1

US 9,183,211 B1
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

(56)

COOPERATIVE STORAGE OF SHARED
FILES IN A PARALLEL COMPUTING
SYSTEM WITH DYNAMIC BLOCK SIZE

Applicants:John M. Bent, Los Alamos, NM (US);
Sorin Faibish, Newton, MA (US); Gary
Grider, Los Alamos, NM (US)
Inventors: John M. Bent, Los Alamos, NM (US);
Sorin Faibish, Newton, MA (US); Gary
Grider, Los Alamos, NM (US)
Assignees: EMC Corporation, Hopkinton, MA
(US); Los Alamos National Security,
LLC, Los Alamos, NM (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 15 days.

Appl. No.: 13/730,080

Filed: Dec. 28, 2012

Int. Cl1.
GO6F 17/30
U.S. CL
CPC

(2006.01)

GOGF 17/30091 (2013.01); GOGF 17/30
(2013.01)

Field of Classification Search
None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
8/1999 Schmuck et al.

2/2004 McNeil et al.
8/2004 Peters et al. ..

............. 707/783
. 711/162
L 711112

5,946,686 A *
6,691,212 B1*
6,785,768 B2 *

2011/0282832 Al* 11/2011 Risheletal. 707/609
2012/0296872 Al* 11/2012 Frostetal. 707/634
2013/0159364 Al 6/2013 Grider et al.

OTHER PUBLICATIONS

Bentetal., “PLFS: a checkpoint filesystem for parallel applications,”
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC *09). ACM, New York, N.Y.,
USA, 12 pages, 2009.*

* cited by examiner

Primary Examiner — Robert Beausoliel, Jr.
Assistant Examiner — Pedro J Santos
(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP

57 ABSTRACT

Improved techniques are provided for parallel writing of data
to a shared object in a parallel computing system. A method is
provided for storing data generated by a plurality of parallel
processes to a shared object in a parallel computing system.
The method is performed by at least one of the processes and
comprises: dynamically determining a block size for storing
the data; exchanging a determined amount of the data with at
least one additional process to achieve a block of the data
having the dynamically determined block size; and writing
the block of the data having the dynamically determined
block size to a file system. The determined block size com-
prises, e.g., a total amount of the data to be stored divided by
the number of parallel processes. The file system comprises,
for example, a log structured virtual parallel file system, such
as a Parallel Log-Structured File System (PLFS).

2010/0088317 Al* 4/2010 Boneetal.ccccouee. 707/737 20 Claims, 7 Drawing Sheets

‘f300

P1 P2 P3 P4 P5 P6 P7 P8 P9
““““““““““ BT B S Rtttk St St B
{47,100 1 (57,0000 | 157,11} ! 168,60} ! {22850} | 278,90 ! 368,11} ! 1379,30} | {409,60}
i
310-1 310-2 | 310-3 310-7 | 310-8 310-9
|
|
|
i
|

320-0
0,47

310-4

o e e e e e e]

e

3201
{47,47}

320-2
§94,47}

320-3
{14147} 188,47}

320-4

310-5
S S

R i ittt

S
320-5
235,47}

320-6
282,47}

320-7
{329,47}

320-8
376,47}

320-9
42347}

U.S. Patent Nov. 10, 2015 Sheet 1 of 7 US 9,183,211 B1

100
J

120-N

[110-N

— 140
/‘—’*150

_

Lag]
o I
(o]
= < &
[~
\ Li
A =
w =
o O
. S &
Jumand
QS =
~ =
[L' CT‘ o~ o~ [
= ! AN =
= I 1
\ /
a
&
/\N

120-1

IH(H

US 9,183,211 B1

Sheet 2 of 7

Nov. 10, 2015

U.S. Patent

for'gvrt fpoweel fh9'ozel $r9'est
(07T 9-077 6-027 ¥-07T

S

TANATE I X ALY {7979} fr9'0}

mumuw -0t |-07¢ 0-0¢¢

S 3 Ea
6-017 -017 | 01T 9-012 6-017 | #-017
f09'60r} 1 fos'6eet (ii‘eaet | foe'szzl | fos'szzd | {09's9l

Y W L 9 W 1
w’ 14V 01
¢ I9Id

¢-012 7-017 0-01Z
HINISE: f001°L6} $19°0}

IIIIIII e —_————

gd i 0d

US 9,183,211 B1

Sheet 3 of 7

Nov. 10, 2015

U.S. Patent

irstyd forost dersl doreedd orssd oresyd i $Lv'v6} 't ol
6-07¢ 8-07¢ L-0T¢ 9-07¢ m-ms ¥-078 €-07¢ 7-07¢ =078 0-028

5 |
6-01¢ 9-01¢ ¢-01¢ =018 1 o1-018 ! 0-0I¢
i
§09°607} §06'8.L7} HIWIYE i f001°26} to_.:f $1v'ol
6d ¢d u Id 0d
o5/

U.S. Patent Nov. 10, 2015 Sheet 4 of 7 US 9,183,211 B1

FIG. 4A 0
J

int
ad_plfs_write(MPL_File *file, char *callers_buf, off_t, len_t len) §

// create arrays to exchange info about offsets and lengths with our peer
off_t *offsets = malloc(sizeof(off_t) * file~>num_procs);
len_t *lengths = malloc(sizeof(len_t) * file—>num_procs);

// do the exchange
MPL_Reduce_all(file=>comm, file—>rank, off, len, offsets, lengths);

// some variables about how much data will be shuffled

// every rank will either send/receive to peer on left and peer on right
len_t bytes_from_left, bytes_from_right, bytes_to_left, bytes_to_right;
len_t bytes each; // how many bytes does each rank write

len_t total_bytes; // how many total bytes are being written now

// now do some complicated math to figure out how many bytes to shuffle

bool possible = compute_shuffling(file~>num_procs, offsets, lengths,
file=>rank, &bytes_from_left, &bytes_from_right, &bytes_ to_left,
&bytes_to_right, &total_bytes);

// do the simple write and exit if simple shuffling isn’t possible
if (! possible) §

return pwrite(file=>1d, callers_buf, len, off);
i

// make the buffer for the write and for receiving bytes
char *write_buf = malloc(sizeof(char) * bytes_each);

U.S. Patent Nov. 10, 2015 Sheet 5 of 7 US 9,183,211 B1

FIG. 4B Y 400

// now shuffle bytes with neighbor on left.
if (bytes_from_left > 0) §
// receive them into our write buffer at offset 0
MPL_Receive(file=>rank-1, write_buf[0], bytes_from_left);
{ elseif (bytes_to_left > 0) §
// send them from our callers_buf
MPL_Send(file—>rank~1, callers_buf[0], bytes_to_left);

i

// now shuffle bytes with neighbor on right.
if (bytes_from_right > 0) §
// receive them into our write buffer from the end
MPL_Receive(file~>rank+1, write_buf[bytes_each — bytes_from_right],
bytes_from_right);
{ elseif (bytes_to_right > 0) §
// send them from our callers_buf
MPL_Send(file->rank+1, callers_buf[len - bytes_to_right],
bytes_to_right);

// now copy anything left from callers_buf to write_buf
if (bytes_to_left + bytes_to_right < bytes_each) §
memcpy(write_buf[bytes_from_left], callers_buf[bytes_to_left],
bytes_each ~ bytes_to_left - bytes_to_right);

U.S. Patent Nov. 10, 2015 Sheet 6 of 7 US 9,183,211 B1

FIG. 4C /400

// findlly do the write
// rank n=1 might write fewer than the rest. Adjust accordingly.

len_t my_write_size = bytes_each;
If (file=>rank == file->num_procs - 1) §
len_t extra_bytes = bytes_each * num_procs;
my_write_size = total_bytes — extra_bytes;
i
return pwrite(file—>fd,write_buf,my_write_size,
off - bytes_from_left + bytes_to_right);

U.S. Patent Nov. 10, 2015 Sheet 7 of 7 US 9,183,211 B1

" FIG. 5

compute_shuffling(int num_procs, off_t offsets[], len_t lengths], 500
int my_rank, /
len_t *bytes_from_left, len_t *bytes_from_right,
len_t *bytes_to_left, len_t *bytes_to_right, len_t *total_bytes)

// initialize the return values
*bytes_from_left = 0;
*bytes_from_right = 0;
*bytes_to_left = 0;
*bytes_to_right = 0;

// compute the total number of bytes

len_t total_bytes = 0;

for(int i = 0; i < num_procs; i++) §
*otal_bytes += lengths;

~

/ now figure out the balanced number of bytes for each rank

// use math ceil of the division which may leave the last rank with
// a few bytes fewer than the rest.

len_t bytes_each = ceil((float)*total_bytes / num_procs);

// now go back through and check whether simple shuffling is possible
for (int i = 0; i < numb_procs; i++) §

len_t balanced_start = i * bytes_each;

len_t balanced_end = balanced_start + bytes_each;

if (abs(balanced_start - offsets[i]) > bytes_each)
return false;

if (abs(balanced_end - (offsets[i] + lengths[i])) > bytes_each)
return false;

// if we make it here, then simple shuffling is possible, proceed

//now figure out what my start and end offset should be
off_t my_balanced_offset = my_rank * bytes_each;

off_t my_balanced_end = my_balanced_offset + bytes_each;
off_t my_current_end = offsets[my_rank] + lengths[my_rank];

if (my_balanced_offset < offsets[my_rank])
*bytes_from_left = my_balanced_offset - offsets[my_rank];
{ elseif (my_balanced_offset > offsets{my_ronk]) {
*bytes_to_left = offsets[my_rank] — my_balanced_offset;

if (my_current_end < my_balanced_end |
*bytes_from_right = my_balanced_end - my_current_end;
{ elseif (my_current_end > my_balanced_end)
*bytes_to_right = my_current_end - my_balanced_end;

return true;

US 9,183,211 Bl

1
COOPERATIVE STORAGE OF SHARED
FILES IN A PARALLEL COMPUTING
SYSTEM WITH DYNAMIC BLOCK SIZE

STATEMENT OF GOVERNMENT RIGHTS

This invention was made under a Cooperative Research
and Development Agreement between EMC Corporation and
Los Alamos National Security, LL.C. The United States gov-
ernment has rights in this invention pursuant to Contract No.
DE-AC52-06NA25396 between the United States Depart-
ment of Energy and Los Alamos National Security, LL.C for
the operation of Los Alamos National Laboratory.

FIELD

The present invention relates to parallel storage in high
performance computing environments.

BACKGROUND

Parallel storage systems are widely used in many comput-
ing environments. Parallel storage systems provide high
degrees of concurrency in which many distributed processes
within a parallel application simultaneously access a shared
file namespace.

Parallel computing techniques are used in many industries
and applications for implementing computationally intensive
models or simulations. For example, the Department of
Energy uses a large number of distributed compute nodes
tightly coupled into a supercomputer to model physics
experiments. In the oil and gas industry, parallel computing
techniques are often used for computing geological models
that help predict the location of natural resources.

When a number of parallel processes write data to a shared
object, block boundaries, data integrity concerns and serial-
ization of shared resources have prevented fast shared writ-
ing. Recent efforts to address this problem have employed log
structured virtual parallel file systems, such as a Parallel
Log-Structured File System (PLFS). See, e.g., U.S. patent
application Ser. No. 13/536,331, filed Jun. 28, 2012, entitled
“Storing Files in a Parallel Computing System Using List-
Based Index to Identify Replica Files,” incorporated by ref-
erence herein. While such techniques have improved the
speed of shared writing, they create a secondary challenge to
maintain the necessary amount of metadata without creating
unnecessary overhead since log structured file systems are
known to create more metadata than traditional flat file file-
systems.

A need therefore exists for improved techniques for paral-
lel writing of data to a shared object, in order to reduce file
system metadata.

SUMMARY

Embodiments of the present invention provide improved
techniques for parallel writing of data to a shared object in a
parallel computing system. In one embodiment, a method is
provided for storing data generated by a plurality of parallel
processes to a shared object in a parallel computing system,
wherein the method is performed by at least one of the pro-
cesses and comprises the steps of: dynamically determining a
block size for storing the data; exchanging a determined
amount of the data with at least one additional process to
achieve a block of the data having the dynamically deter-
mined block size; and writing the block of the data having the
dynamically determined block size to a file system.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one exemplary embodiment, the determined block size
comprises a total amount of the data to be stored by the
plurality of parallel processes divided by a number of the
plurality of parallel processes. The file system comprises, for
example, a log structured virtual parallel file system, such as
a Parallel Log-Structured File System (PLFS).

Advantageously, illustrative embodiments of the invention
provide techniques for parallel writing of data to a shared
object. These and other features and advantages of the present
invention will become more readily apparent from the accom-
panying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary storage system in which
aspects of the present invention can be implemented;

FIG. 2 illustrates an exemplary conventional approach for
cooperative parallel writing by a plurality of processes to a
shared object;

FIG. 3 illustrates an exemplary approach for cooperative
parallel writing by a plurality of processes to a shared object
in accordance with aspects of the invention;

FIGS. 4A through 4C, collectively, illustrate exemplary
pseudo code for performing the cooperative parallel writing
of F1G. 3; and

FIG. 5 illustrates exemplary pseudo code for determining
how many bytes to shuftle for the process of FIG. 4.

DETAILED DESCRIPTION

The present invention provides improved techniques for
cooperative parallel writing of data to a shared object. Gen-
erally, aspects of the present invention leverage the parallel-
ism of concurrent writes to a shared object and the high
interconnect speed of parallel supercomputer networks to
move a small amount of data in order to eliminate a significant
amount of metadata. Metadata records a location for every
byte of data. When the data is well-organized, the metadata
can record a single pattern that describes the data written by
all writers. Unorganized data, however, requires a unique
piece of metadata for each piece of data written by each
writer. Typically, the writers are writing data from a struc-
tured, but adaptively sized, multi-dimensional mesh. In this
instance, if each writer can shuffle a small amount of data to
a neighbor, then every writer can write the same amount of
data and thus, the metadata can be compressed to a single
pattern. For large systems, the reduction in metadata can be
several orders of magnitude achieved by only moving a small
fraction of the data.

Embodiments of the present invention will be described
herein with reference to exemplary computing systems and
data storage systems and associated servers, computers, stor-
age units and devices and other processing devices. It is to be
appreciated, however, that embodiments of the invention are
not restricted to use with the particular illustrative system and
device configurations shown. Moreover, the phrases “com-
puting system” and “data storage system” as used herein are
intended to be broadly construed, so as to encompass, for
example, private or public cloud computing or storage sys-
tems, as well as other types of systems comprising distributed
virtual infrastructure. However, a given embodiment may
more generally comprise any arrangement of one or more
processing devices.

Asused herein, the term “files” shall include complete files
and portions of files, such as sub-files or shards.

FIG. 1 illustrates an exemplary storage system 100 that
incorporates aspects of the present invention. As shown in

US 9,183,211 Bl

3

FIG. 1, the exemplary storage system 100 comprises a plu-
rality of compute nodes 110-1 through 110-N (collectively,
compute nodes 110) each having a portion 120-1 through
120-N of a distributed shared data structure or other informa-
tion to store. The compute nodes 110 optionally store the
portions 120 of the distributed data structure in one or more
nodes of the exemplary storage system 100, such as an exem-
plary flash based storage node 140 (e.g., a burst buffer node).
In addition, the exemplary hierarchical storage tiering system
100 optionally comprises one or more hard disk drives 150.

As discussed hereinafter, the Parallel Log-Structured File
System (PLFS) can make placement decisions automatically,
as described in U.S. patent application Ser. No. 13/536,331,
filed Jun. 28, 2012, entitled “Storing Files in a Parallel Com-
puting System Using List-Based Index to Identify Replica
Files,” incorporated by reference herein, or it can be explicitly
controlled by the application and administered by a storage
daemon.

FIG. 2 illustrates an exemplary conventional approach 200
for cooperative parallel writing by a plurality of processes P0
through P9 of data portions 210-0 through 210-9 to a shared
object. As shown in FIG. 2, each data portion 210 is specified
by an {offset, size} within the shared object. Generally, the
exemplary conventional approach 200 writes chunks or
blocks of a fixed size. In the exemplary implementation of
FIG. 2, the fixed block size is 64 bytes.

During a first phase, the processes P0 through P9 broadcast
the number of bytes that each have to write. For example,
Process P0 has 47 bytes to write and Process P3 has 11 bytes
to write. Thus, each process P0 through P9 can determine how
many bytes it needs to exchange with one or more additional
processes P0 through P9 to achieve the exemplary fixed block
size of 64 bytes, which is known a priori and is constant across
write operations.

An inter-process message exchange occurs during a sec-
ond phase to re-distribute bytes to achieve blocks 220 having
the desired fixed block size. For example, Process P1 sends its
10 bytes to Process PO and Process P2 sends 7 bytes to
Process PO, so that Process P0 has a resulting block 220-0 of
64 bytes.

During a third phase, each process that has a block 220 to
write, such as processes P0-P7 in FIG. 2, send the data to the
file system for storage, such as the exemplary flash based
storage node 140 of FIG. 1. As shown in FIG. 2, each data
block 220 is specified by an {offset, size} within the shared
object.

The exemplary conventional approach 200 of FIG. 2 must
move a significant fraction of the data 210 because it is
re-arranging the data in order to be aligned with the artificial
file system boundaries. In addition, the exemplary conven-
tional approach 200 is likely to distribute data across widely
spaced peers in the super-computer with little probability of
locality. Further, this approach is difficult because it relies on
accurate knowledge of what are performance meaningful file
system boundaries. These values change frequently across
different file systems and across different configurations of
the same file system. Also, there is no standardized way to
discover these values, so specialized code must be written for
each file system. In addition, the approach 200 of FIG. 2 may
also reduce the total number of writers (Processes P8 and P9
in FIG. 2 do not write any data) and thereby reduce the
parallelism in the system.

Aspects of the present invention leverage the parallelism of
concurrent writes to a shared object and the high interconnect
speed of parallel supercomputer networks to move a small
amount of data in order to eliminate a significant amount of
metadata. As indicated above, metadata records a location for

30

35

40

45

4

every byte of data. It is again noted that minimizing metadata
is important to avoid unnecessary latency.

FIG. 3 illustrates an exemplary approach 300 for coopera-
tive parallel writing by a plurality of processes P0 through P9
of data portions 310-0 through 310-9 to a shared object that
incorporate aspects of the invention. As shown in FIG. 3, each
data portion 310 is specified by an {offset, size} within the
shared object. Generally, the exemplary approach 300
dynamically determines an appropriate block size for writing
chunks to the shared object.

During a first phase, the processes P0 through P9 broadcast
the number of bytes that each have to write. For example,
Process P0 has 47 bytes to write and Process P3 has 11 bytes
to write. Thus, each process P0 through P9 can determine the
total number of bytes and the total number of processes. The
dynamically determined block size can be expressed as fol-
lows:

_total number of bytes
"~ total number of process’

In this manner, each process can determine how many bytes it
needs to exchange with one or more additional processes P0
through P9 to achieve the dynamically determined block size.
In the example of FIG. 3, the dynamically determined block
size is 47 bytes (470/10).

An inter-process message exchange occurs during a sec-
ond phase to re-distribute bytes to achieve blocks 320 having
the dynamically determined block size. For example, Process
P2 sends 37 bytes to Process P1 and 16 bytes to Process P3, so
that Processes P0, P1 and P2 (as well as processes P3-P9) all
have a resulting block 320 of 47 bytes.

During a third phase, each process P0-P9 has a block 320 to
write and sends the data to the file system for storage, such as
the exemplary flash based storage node 140 of FIG. 1. As
shown in FIG. 3, each data block 320 is specified by an
{offset, size} within the shared object.

Aspects of the present invention recognize that the log-
structured file system eliminates the need for artificial file
system boundaries because all block sizes perform equally
well in a log-structured file system. In this manner, a reduced
amount of data is moved using the approach 300 of FIG. 3 to
create a uniform distribution of data across the writers.
Among other benefits, the disclosed approach of FIG. 3 will
tend to move data only between neighboring processes that
are more closely located on the supercomputer interconnect
network.

FIGS. 4A through 4C, collectively, illustrate exemplary
pseudo code 400 for performing the cooperative parallel writ-
ing of FIG. 3. The pseudo code 400 is implemented by each of
the plurality of processes PO through P9. In the exemplary
embodiment of FIG. 4, each process at a maximum only
shuftles bytes with immediate neighbors (which will be the
case for most implementations). Algorithms to extend the
pseudo code 400 into a more general case in which bytes can
be arbitrarily shuffled would be apparent to a person of ordi-
nary skill in the art, based on the disclosure herein. See, for
example, http://www.mcs.anl.gov/~thakur/papers/romio-
coll.pdf.

Inthe exemplary embodiment of FIG. 4, a caller has passed
a buffer to write to a shared file. Instead of immediately
writing the buffer contents, the pseudo code 400 will poten-
tially shuffle pieces of the buffer contents with one or more
neighboring processes that have buffers of their own. The
portion of code 400 in FIG. 4A calls a routine discussed

US 9,183,211 Bl

5

further below in conjunction with FIG. 5 to determine how
many bytes to shuffle. The portion of code 400 in FIG. 4B
performs the shuffling and prepares a buffer for writing to the
file system. After the shuftling performed by the pseudo code
400 of FIG. 4B, each process will have the same number of
bytes. The portion of code 400 in FIG. 4C performs the write
operation to the file system.

FIG. 5 illustrates exemplary pseudo code 500 for determin-
ing how many bytes to shuffle for the process of FIG. 4. The

exemplary pseudo code 500 returns a value of true if simple 10

shuffling is possible, and a value of false otherwise.

Because PLFS files can be shared across many locations,
data movement required to implement these functions can be
performed more efficiently when there are multiple nodes
cooperating on the data movement operations. Therefore,
when this is run on a parallel system with a parallel language,
such as MPI, PLFS can provide MPI versions of these func-
tions which will allow it to exploit parallelism for more effi-
cient data manipulation.

CONCLUSION

Numerous other arrangements of servers, computers, stor-
age devices or other components are possible. Such compo-
nents can communicate with other elements over any type of
network, such as a wide area network (WAN), a local area
network (LAN), a satellite network, a telephone or cable
network, or various portions or combinations of these and
other types of networks.

While exemplary embodiments of the present invention
have been described with respect to processing steps in a
software program, as would be apparent to one skilled in the
art, various functions may be implemented in hardware, for
example, by a programmed general-purpose computer, cir-
cuit elements or state machines, or in combination of both
software and hardware. Such software may be stored in a
memory and employed by, for example, a hardware device,
such as a digital signal processor. In one exemplary embodi-
ment, the invention may be implemented by a data storage
system having a processing unit and a storage medium.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations may be made in the particu-
lar arrangements shown. For example, although described in
the context of particular system and device configurations,
the techniques are applicable to a wide variety of other types
of'information processing systems, data storage systems, pro-
cessing devices and distributed virtual infrastructure arrange-
ments. In addition, any simplifying assumptions made above
in the course of describing the illustrative embodiments
should also be viewed as exemplary rather than as require-
ments or limitations of the invention. Numerous other alter-
native embodiments within the scope of the appended claims
will be readily apparent to those skilled in the art.

What is claimed is:

1. A method performed at a compute node for storing data
generated by a plurality of parallel processes to a shared
object in a parallel computing system, wherein said method is
performed by at least a first one of said parallel processes that
generate said shared object, wherein said compute node hosts
at least said first one of said parallel processes and wherein
said method comprises the steps of:

dynamically determining a write block size for storing said

data;

exchanging a determined amount of said data with at least

a second one of said parallel processes to achieve ablock
of said data having said dynamically determined write

20

25

30

35

40

45

55

6

block size, wherein said exchanging comprises said first
one of said parallel processes one or more of (i) sending
said determined amount of'said data to, and (ii) receiving
said determined amount of said data from, said at least
second one of said parallel processes to achieve said
block of said data having said dynamically determined
write block size at said compute node hosting said first
one of said parallel processes; and

writing said block of said data having said dynamically

determined block size to a file system for storage.

2. The method of claim 1, wherein said determined write
block size comprises a total amount of said data to be stored
by said plurality of parallel processes divided by a number of
said plurality of parallel processes.

3. The method of claim 1, further comprising the step of
broadcasting a number of bytes to be written by each of said
plurality of parallel processes.

4. The method of claim 1, wherein said exchanging step
comprises an inter-process message exchange.

5. The method of claim 1, wherein said file system com-
prises a log structured virtual parallel file system.

6. The method of claim 1, wherein said file system com-
prises a Parallel Log-Structured File System (PLFS).

7. A compute node apparatus for storing data generated by
aplurality of parallel processes to a shared object in a parallel
computing system, wherein said apparatus hosts at least a first
one of said parallel processes, wherein said apparatus com-
prises:

a memory; and

at least one hardware device operatively coupled to the

memory and configured to:

dynamically determine a write block size for storing said

data;

exchange a determined amount of said data with at least a

second one of said parallel processes to achieve a block
of said data having said dynamically determined write
block size, wherein said exchange comprises said first
one of said parallel processes one or more of (i) sending
said determined amount of'said data to, and (ii) receiving
said determined amount of said data from, said at least
second one of said parallel processes to achieve said
block of said data having said dynamically determined
write block size at said compute node hosting said first
one of said parallel processes; and

write said block of said data having said dynamically deter-

mined block size to a file system for storage.

8. The compute node apparatus of claim 7, wherein said
determined write block size comprises a total amount of said
datato be stored by said plurality of parallel processes divided
by a number of said plurality of parallel processes.

9. The compute node apparatus of claim 7, further com-
prising broadcasting a number of bytes to be written by each
of said plurality of parallel processes.

10. The compute node apparatus of claim 7, wherein said
exchange comprises an inter-process message exchange.

11. The compute node apparatus of claim 7, wherein said
file system comprises a log structured virtual parallel file
system.

12. The compute node apparatus of claim 7, wherein said
file system comprises a Parallel Log-Structured File System
(PLFS).

13. A data storage system of a compute node for storing
data generated by a plurality of parallel processes to a shared
object in a parallel computing system, wherein said compute
node hosts at least a first one of said parallel processes,
wherein said data storage system comprises:

US 9,183,211 Bl

7

a processing unit that dynamically determines a write
block size for storing said data and for exchanging a
determined amount of said data with at least a second
one of said parallel processes to achieve a block of said
data having said dynamically determined write block
size, wherein said exchange comprises said first one of
said parallel processes one or more of (i) sending said
determined amount of said data to, and (ii) receiving said
determined amount of said data from, said at least sec-
ond one of said parallel processes to achieve said block
of said data having said dynamically determined write
block size at said compute node hosting said first one of
said parallel processes; and

a storage medium that stores said block of said data having
said dynamically determined write block size prior to
writing said block of said data to a file system.

14. The data storage system of claim 13, wherein said
determined write block size comprises a total amount of said
datato be stored by said plurality of parallel processes divided
by a number of said plurality of parallel processes.

8

15. The data storage system of claim 13, wherein said
processing unit is further configured to broadcast a number of
bytes to be written by each of said plurality of parallel pro-
cesses.

16. The data storage system of claim 13, wherein said
exchange comprises an inter-process message exchange.

17. The data storage system of claim 13, wherein said file
system comprises a log structured virtual parallel file system.

18. The data storage system of claim 13, wherein said file
system comprises a Parallel Log-Structured File System
(PLFS).

19. The method of claim 1, wherein said step of exchanging
a determined amount of said data with at least a second one of
said parallel processes is performed using an interconnect of
said parallel computing system.

20. The compute node apparatus of claim 7, wherein said
step of exchanging a determined amount of said data with at
least a second one of said parallel processes is performed
using an interconnect of said parallel computing system.

#* #* #* #* #*

